Thursday, March 30, 2017
Scalability updates in Kubernetes 1.6: 5,000 node and 150,000 pod clusters
Editor’s note: this post is part of a series of in-depth articles on what’s new in Kubernetes 1.6
Last summer we shared updates on Kubernetes scalability, since then we’ve been working hard and are proud to announce that Kubernetes 1.6 can handle 5,000-node clusters with up to 150,000 pods. Moreover, those cluster have even better end-to-end pod startup time than the previous 2,000-node clusters in the 1.3 release; and latency of the API calls are within the one-second SLO.
In this blog post we review what metrics we monitor in our tests and describe our performance results from Kubernetes 1.6. We also discuss what changes we made to achieve the improvements, and our plans for upcoming releases in the area of system scalability.
X-node clusters - what does it mean?
Now that Kubernetes 1.6 is released, it is a good time to review what it means when we say we “support” X-node clusters. As described in detail in a previous blog post, we currently have two performance-related Service Level Objectives (SLO):
- API-responsiveness : 99% of all API calls return in less than 1s
- Pod startup time : 99% of pods and their containers (with pre-pulled images) start within 5s.
As before, it is possible to run larger deployments than the stated supported 5,000-node cluster (and users have), but performance may be degraded and it may not meet our strict SLO defined above.
We are aware of the limited scope of these SLOs. There are many aspects of the system that they do not exercise. For example, we do not measure how soon a new pod that is part of a service will be reachable through the service IP address after the pod is started. If you are considering using large Kubernetes clusters and have performance requirements not covered by our SLOs, please contact the Kubernetes Scalability SIG so we can help you understand whether Kubernetes is ready to handle your workload now.
The top scalability-related priority for upcoming Kubernetes releases is to enhance our definition of what it means to support X-node clusters by:
- refining currently existing SLOs
- adding more SLOs (that will cover various areas of Kubernetes, including networking)
Kubernetes 1.6 performance metrics at scale
So how does performance in large clusters look in Kubernetes 1.6? The following graph shows the end-to-end pod startup latency with 2000- and 5000-node clusters. For comparison, we also show the same metric from Kubernetes 1.3, which we published in our previous scalability blog post that described support for 2000-node clusters. As you can see, Kubernetes 1.6 has better pod startup latency with both 2000 and 5000 nodes compared to Kubernetes 1.3 with 2000 nodes [1].
The next graph shows API response latency for a 5000-node Kubernetes 1.6 cluster. The latencies at all percentiles are less than 500ms, and even 90th percentile is less than about 100ms.
How did we get here?
Over the past nine months (since the last scalability blog post), there have been a huge number of performance and scalability related changes in Kubernetes. In this post we will focus on the two biggest ones and will briefly enumerate a few others.
etcd v3
In Kubernetes 1.6 we switched the default storage backend (key-value store where the whole cluster state is stored) from etcd v2 to etcd v3. The initial works towards this transition has been started during the 1.3 release cycle. You might wonder why it took us so long, given that:
- the first stable version of etcd supporting the v3 API was announced on June 30, 2016
- the new API was designed together with the Kubernetes team to support our needs (from both a feature and scalability perspective)
the integration of etcd v3 with Kubernetes had already mostly been finished when etcd v3 was announced (indeed CoreOS used Kubernetes as a proof-of-concept for the new etcd v3 API) As it turns out, there were a lot of reasons. We will describe the most important ones below.
Changing storage in a backward incompatible way, as is in the case for the etcd v2 to v3 migration, is a big change, and thus one for which we needed a strong justification. We found this justification in September when we determined that we would not be able to scale to 5000-node clusters if we continued to use etcd v2 (kubernetes/32361 contains some discussion about it). In particular, what didn’t scale was the watch implementation in etcd v2. In a 5000-node cluster, we need to be able to send at least 500 watch events per second to a single watcher, which wasn’t possible in etcd v2.
Once we had the strong incentive to actually update to etcd v3, we started thoroughly testing it. As you might expect, we found some issues. There were some minor bugs in Kubernetes, and in addition we requested a performance improvement in etcd v3’s watch implementation (watch was the main bottleneck in etcd v2 for us). This led to the 3.0.10 etcd patch release.
Once those changes had been made, we were convinced that new Kubernetes clusters would work with etcd v3. But the large challenge of migrating existing clusters remained. For this we needed to automate the migration process, thoroughly test the underlying CoreOS etcd upgrade tool, and figure out a contingency plan for rolling back from v3 to v2. But finally, we are confident that it should work.
Switching storage data format to protobuf
In the Kubernetes 1.3 release, we enabled protobufs as the data format for Kubernetes components to communicate with the API server (in addition to maintaining support for JSON). This gave us a huge performance improvement.
However, we were still using JSON as a format in which data was stored in etcd, even though technically we were ready to change that. The reason for delaying this migration was related to our plans to migrate to etcd v3. Now you are probably wondering how this change was depending on migration to etcd v3. The reason for it was that with etcd v2 we couldn’t really store data in binary format (to workaround it we were additionally base64-encoding the data), whereas with etcd v3 it just worked. So to simplify the transition to etcd v3 and avoid some non-trivial transformation of data stored in etcd during it, we decided to wait with switching storage data format to protobufs until migration to etcd v3 storage backend is done.
Other optimizations
We made tens of optimizations throughout the Kubernetes codebase during the last three releases, including:
- optimizing the scheduler (which resulted in 5-10x higher scheduling throughput)
- switching all controllers to a new recommended design using shared informers, which reduced resource consumption of controller-manager - for reference see this document
- optimizing individual operations in the API server (conversions, deep-copies, patch)
- reducing memory allocation in the API server (which significantly impacts the latency of API calls)
We want to emphasize that the optimization work we have done during the last few releases, and indeed throughout the history of the project, is a joint effort by many different companies and individuals from the whole Kubernetes community.
What’s next?
People frequently ask how far we are going to go in improving Kubernetes scalability. Currently we do not have plans to increase scalability beyond 5000-node clusters (within our SLOs) in the next few releases. If you need clusters larger than 5000 nodes, we recommend to use federation to aggregate multiple Kubernetes clusters.
However, that doesn’t mean we are going to stop working on scalability and performance. As we mentioned at the beginning of this post, our top priority is to refine our two existing SLOs and introduce new ones that will cover more parts of the system, e.g. networking. This effort has already started within the Scalability SIG. We have made significant progress on how we would like to define performance SLOs, and this work should be finished in the coming month.
Join the effort
If you are interested in scalability and performance, please join our community and help us shape Kubernetes. There are many ways to participate, including:
- Chat with us in the Kubernetes Slack scalability channel:
- Join our Special Interest Group, SIG-Scalability, which meets every Thursday at 9:00 AM PST
Thanks for the support and contributions! Read more in-depth posts on what’s new in Kubernetes 1.6 here.
– Wojciech Tyczynski, Software Engineer, Google
[1] We are investigating why 5000-node clusters have better startup time than 2000-node clusters. The current theory is that it is related to running 5000-node experiments using 64-core master and 2000-node experiments using 32-core master.
- Introducing kustomize; Template-free Configuration Customization for Kubernetes May 29
- Getting to Know Kubevirt May 22
- Gardener - The Kubernetes Botanist May 17
- Docs are Migrating from Jekyll to Hugo May 5
- Announcing Kubeflow 0.1 May 4
- Current State of Policy in Kubernetes May 2
- Developing on Kubernetes May 1
- Zero-downtime Deployment in Kubernetes with Jenkins Apr 30
- Kubernetes Community - Top of the Open Source Charts in 2017 Apr 25
- Local Persistent Volumes for Kubernetes Goes Beta Apr 13
- Container Storage Interface (CSI) for Kubernetes Goes Beta Apr 10
- Fixing the Subpath Volume Vulnerability in Kubernetes Apr 4
- Principles of Container-based Application Design Mar 15
- Expanding User Support with Office Hours Mar 14
- How to Integrate RollingUpdate Strategy for TPR in Kubernetes Mar 13
- Apache Spark 2.3 with Native Kubernetes Support Mar 6
- Kubernetes: First Beta Version of Kubernetes 1.10 is Here Mar 2
- Reporting Errors from Control Plane to Applications Using Kubernetes Events Jan 25
- Core Workloads API GA Jan 15
- Introducing client-go version 6 Jan 12
- Extensible Admission is Beta Jan 11
- Introducing Container Storage Interface (CSI) Alpha for Kubernetes Jan 10
- Kubernetes v1.9 releases beta support for Windows Server Containers Jan 9
- Five Days of Kubernetes 1.9 Jan 8
- Introducing Kubeflow - A Composable, Portable, Scalable ML Stack Built for Kubernetes Dec 21
- Kubernetes 1.9: Apps Workloads GA and Expanded Ecosystem Dec 15
- Using eBPF in Kubernetes Dec 7
- PaddlePaddle Fluid: Elastic Deep Learning on Kubernetes Dec 6
- Autoscaling in Kubernetes Nov 17
- Certified Kubernetes Conformance Program: Launch Celebration Round Up Nov 16
- Kubernetes is Still Hard (for Developers) Nov 15
- Securing Software Supply Chain with Grafeas Nov 3
- Containerd Brings More Container Runtime Options for Kubernetes Nov 2
- Kubernetes the Easy Way Nov 1
- Enforcing Network Policies in Kubernetes Oct 30
- Using RBAC, Generally Available in Kubernetes v1.8 Oct 28
- It Takes a Village to Raise a Kubernetes Oct 26
- kubeadm v1.8 Released: Introducing Easy Upgrades for Kubernetes Clusters Oct 25
- Five Days of Kubernetes 1.8 Oct 24
- Introducing Software Certification for Kubernetes Oct 19
- Request Routing and Policy Management with the Istio Service Mesh Oct 10
- Kubernetes Community Steering Committee Election Results Oct 5
- Kubernetes 1.8: Security, Workloads and Feature Depth Sep 29
- Kubernetes StatefulSets & DaemonSets Updates Sep 27
- Introducing the Resource Management Working Group Sep 21
- Windows Networking at Parity with Linux for Kubernetes Sep 8
- Kubernetes Meets High-Performance Computing Aug 22
- High Performance Networking with EC2 Virtual Private Clouds Aug 11
- Kompose Helps Developers Move Docker Compose Files to Kubernetes Aug 10
- Happy Second Birthday: A Kubernetes Retrospective Jul 28
- How Watson Health Cloud Deploys Applications with Kubernetes Jul 14
- Kubernetes 1.7: Security Hardening, Stateful Application Updates and Extensibility Jun 30
- Draft: Kubernetes container development made easy May 31
- Managing microservices with the Istio service mesh May 31
- Kubespray Ansible Playbooks foster Collaborative Kubernetes Ops May 19
- Kubernetes: a monitoring guide May 19
- Dancing at the Lip of a Volcano: The Kubernetes Security Process - Explained May 18
- How Bitmovin is Doing Multi-Stage Canary Deployments with Kubernetes in the Cloud and On-Prem Apr 21
- RBAC Support in Kubernetes Apr 6
- Configuring Private DNS Zones and Upstream Nameservers in Kubernetes Apr 4
- Advanced Scheduling in Kubernetes Mar 31
- Scalability updates in Kubernetes 1.6: 5,000 node and 150,000 pod clusters Mar 30
- Five Days of Kubernetes 1.6 Mar 29
- Dynamic Provisioning and Storage Classes in Kubernetes Mar 29
- Kubernetes 1.6: Multi-user, Multi-workloads at Scale Mar 28
- The K8sPort: Engaging Kubernetes Community One Activity at a Time Mar 24
- Deploying PostgreSQL Clusters using StatefulSets Feb 24
- Containers as a Service, the foundation for next generation PaaS Feb 21
- Inside JD.com's Shift to Kubernetes from OpenStack Feb 10
- Run Deep Learning with PaddlePaddle on Kubernetes Feb 8
- Highly Available Kubernetes Clusters Feb 2
- Running MongoDB on Kubernetes with StatefulSets Jan 30
- Fission: Serverless Functions as a Service for Kubernetes Jan 30
- How we run Kubernetes in Kubernetes aka Kubeception Jan 20
- Scaling Kubernetes deployments with Policy-Based Networking Jan 19
- A Stronger Foundation for Creating and Managing Kubernetes Clusters Jan 12
- Kubernetes UX Survey Infographic Jan 9
- Kubernetes supports OpenAPI Dec 23
- Cluster Federation in Kubernetes 1.5 Dec 22
- Windows Server Support Comes to Kubernetes Dec 21
- StatefulSet: Run and Scale Stateful Applications Easily in Kubernetes Dec 20
- Introducing Container Runtime Interface (CRI) in Kubernetes Dec 19
- Five Days of Kubernetes 1.5 Dec 19
- Kubernetes 1.5: Supporting Production Workloads Dec 13
- From Network Policies to Security Policies Dec 8
- Kompose: a tool to go from Docker-compose to Kubernetes Nov 22
- Kubernetes Containers Logging and Monitoring with Sematext Nov 18
- Visualize Kubelet Performance with Node Dashboard Nov 17
- CNCF Partners With The Linux Foundation To Launch New Kubernetes Certification, Training and Managed Service Provider Program Nov 8
- Modernizing the Skytap Cloud Micro-Service Architecture with Kubernetes Nov 7
- Bringing Kubernetes Support to Azure Container Service Nov 7
- Tail Kubernetes with Stern Oct 31
- Introducing Kubernetes Service Partners program and a redesigned Partners page Oct 31
- How We Architected and Run Kubernetes on OpenStack at Scale at Yahoo! JAPAN Oct 24
- Building Globally Distributed Services using Kubernetes Cluster Federation Oct 14
- Helm Charts: making it simple to package and deploy common applications on Kubernetes Oct 10
- Dynamic Provisioning and Storage Classes in Kubernetes Oct 7
- How we improved Kubernetes Dashboard UI in 1.4 for your production needs Oct 3
- How we made Kubernetes insanely easy to install Sep 28
- How Qbox Saved 50% per Month on AWS Bills Using Kubernetes and Supergiant Sep 27
- Kubernetes 1.4: Making it easy to run on Kubernetes anywhere Sep 26
- High performance network policies in Kubernetes clusters Sep 21
- Creating a PostgreSQL Cluster using Helm Sep 9
- Deploying to Multiple Kubernetes Clusters with kit Sep 6
- Cloud Native Application Interfaces Sep 1
- Security Best Practices for Kubernetes Deployment Aug 31
- Scaling Stateful Applications using Kubernetes Pet Sets and FlexVolumes with Datera Elastic Data Fabric Aug 29
- SIG Apps: build apps for and operate them in Kubernetes Aug 16
- Kubernetes Namespaces: use cases and insights Aug 16
- Create a Couchbase cluster using Kubernetes Aug 15
- Challenges of a Remotely Managed, On-Premises, Bare-Metal Kubernetes Cluster Aug 2
- Why OpenStack's embrace of Kubernetes is great for both communities Jul 26
- The Bet on Kubernetes, a Red Hat Perspective Jul 21
- Happy Birthday Kubernetes. Oh, the places you’ll go! Jul 21
- A Very Happy Birthday Kubernetes Jul 21
- Bringing End-to-End Kubernetes Testing to Azure (Part 2) Jul 18
- Steering an Automation Platform at Wercker with Kubernetes Jul 15
- Dashboard - Full Featured Web Interface for Kubernetes Jul 15
- Cross Cluster Services - Achieving Higher Availability for your Kubernetes Applications Jul 14
- Citrix + Kubernetes = A Home Run Jul 14
- Thousand Instances of Cassandra using Kubernetes Pet Set Jul 13
- Stateful Applications in Containers!? Kubernetes 1.3 Says “Yes!” Jul 13
- Kubernetes in Rancher: the further evolution Jul 12
- Autoscaling in Kubernetes Jul 12
- rktnetes brings rkt container engine to Kubernetes Jul 11
- Minikube: easily run Kubernetes locally Jul 11
- Five Days of Kubernetes 1.3 Jul 11
- Updates to Performance and Scalability in Kubernetes 1.3 -- 2,000 node 60,000 pod clusters Jul 7
- Kubernetes 1.3: Bridging Cloud Native and Enterprise Workloads Jul 6
- Container Design Patterns Jun 21
- The Illustrated Children's Guide to Kubernetes Jun 9
- Bringing End-to-End Kubernetes Testing to Azure (Part 1) Jun 6
- Hypernetes: Bringing Security and Multi-tenancy to Kubernetes May 24
- CoreOS Fest 2016: CoreOS and Kubernetes Community meet in Berlin (& San Francisco) May 3
- Introducing the Kubernetes OpenStack Special Interest Group Apr 22
- SIG-UI: the place for building awesome user interfaces for Kubernetes Apr 20
- SIG-ClusterOps: Promote operability and interoperability of Kubernetes clusters Apr 19
- SIG-Networking: Kubernetes Network Policy APIs Coming in 1.3 Apr 18
- How to deploy secure, auditable, and reproducible Kubernetes clusters on AWS Apr 15
- Container survey results - March 2016 Apr 8
- Adding Support for Kubernetes in Rancher Apr 8
- Configuration management with Containers Apr 4
- Using Deployment objects with Kubernetes 1.2 Apr 1
- Kubernetes 1.2 and simplifying advanced networking with Ingress Mar 31
- Using Spark and Zeppelin to process big data on Kubernetes 1.2 Mar 30
- Building highly available applications using Kubernetes new multi-zone clusters (a.k.a. 'Ubernetes Lite') Mar 29
- AppFormix: Helping Enterprises Operationalize Kubernetes Mar 29
- How container metadata changes your point of view Mar 28
- Five Days of Kubernetes 1.2 Mar 28
- 1000 nodes and beyond: updates to Kubernetes performance and scalability in 1.2 Mar 28
- Scaling neural network image classification using Kubernetes with TensorFlow Serving Mar 23
- Kubernetes 1.2: Even more performance upgrades, plus easier application deployment and management Mar 17
- Kubernetes in the Enterprise with Fujitsu’s Cloud Load Control Mar 11
- ElasticBox introduces ElasticKube to help manage Kubernetes within the enterprise Mar 11
- State of the Container World, February 2016 Mar 1
- Kubernetes Community Meeting Notes - 20160225 Mar 1
- KubeCon EU 2016: Kubernetes Community in London Feb 24
- Kubernetes Community Meeting Notes - 20160218 Feb 23
- Kubernetes Community Meeting Notes - 20160211 Feb 16
- ShareThis: Kubernetes In Production Feb 11
- Kubernetes Community Meeting Notes - 20160204 Feb 9
- Kubernetes Community Meeting Notes - 20160128 Feb 2
- State of the Container World, January 2016 Feb 1
- Kubernetes Community Meeting Notes - 20160121 Jan 28
- Kubernetes Community Meeting Notes - 20160114 Jan 28
- Why Kubernetes doesn’t use libnetwork Jan 14
- Simple leader election with Kubernetes and Docker Jan 11
- Creating a Raspberry Pi cluster running Kubernetes, the installation (Part 2) Dec 22
- Managing Kubernetes Pods, Services and Replication Controllers with Puppet Dec 17
- How Weave built a multi-deployment solution for Scope using Kubernetes Dec 12
- Creating a Raspberry Pi cluster running Kubernetes, the shopping list (Part 1) Nov 25
- Monitoring Kubernetes with Sysdig Nov 19
- One million requests per second: Dependable and dynamic distributed systems at scale Nov 11
- Kubernetes 1.1 Performance upgrades, improved tooling and a growing community Nov 9
- Kubernetes as Foundation for Cloud Native PaaS Nov 3
- Some things you didn’t know about kubectl Oct 28
- Kubernetes Performance Measurements and Roadmap Sep 10
- Using Kubernetes Namespaces to Manage Environments Aug 28
- Weekly Kubernetes Community Hangout Notes - July 31 2015 Aug 4
- The Growing Kubernetes Ecosystem Jul 24
- Weekly Kubernetes Community Hangout Notes - July 17 2015 Jul 23
- Strong, Simple SSL for Kubernetes Services Jul 14
- Weekly Kubernetes Community Hangout Notes - July 10 2015 Jul 13
- Announcing the First Kubernetes Enterprise Training Course Jul 8
- Kubernetes 1.0 Launch Event at OSCON Jul 2
- How did the Quake demo from DockerCon Work? Jul 2
- The Distributed System ToolKit: Patterns for Composite Containers Jun 29
- Slides: Cluster Management with Kubernetes, talk given at the University of Edinburgh Jun 26
- Cluster Level Logging with Kubernetes Jun 11
- Weekly Kubernetes Community Hangout Notes - May 22 2015 Jun 2
- Kubernetes on OpenStack May 19
- Weekly Kubernetes Community Hangout Notes - May 15 2015 May 18
- Docker and Kubernetes and AppC May 18
- Kubernetes Release: 0.17.0 May 15
- Resource Usage Monitoring in Kubernetes May 12
- Weekly Kubernetes Community Hangout Notes - May 1 2015 May 11
- Kubernetes Release: 0.16.0 May 11
- AppC Support for Kubernetes through RKT May 4
- Weekly Kubernetes Community Hangout Notes - April 24 2015 Apr 30
- Borg: The Predecessor to Kubernetes Apr 23
- Kubernetes and the Mesosphere DCOS Apr 22
- Weekly Kubernetes Community Hangout Notes - April 17 2015 Apr 17
- Kubernetes Release: 0.15.0 Apr 16
- Introducing Kubernetes API Version v1beta3 Apr 16
- Weekly Kubernetes Community Hangout Notes - April 10 2015 Apr 11
- Faster than a speeding Latte Apr 6
- Weekly Kubernetes Community Hangout Notes - April 3 2015 Apr 4
- Paricipate in a Kubernetes User Experience Study Mar 31
- Weekly Kubernetes Community Hangout Notes - March 27 2015 Mar 28
- Kubernetes Gathering Videos Mar 23
- Welcome to the Kubernetes Blog! Mar 20